This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

LIGAND DISPLACEMENT REACTIONS FROM THE COORDINATION SPHERE OF $\left[\mathrm{CIS}\right.$-CO $\left.\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{NO}_{3}$: THE CRYSTAL AND MOLECULAR STRUCTURES OF [CIS-CO $\left.\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{OH}) \mathrm{CL}\right] C L$ (I) AND $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{OXALATO})\right]_{2}\left[\right.$ TRANS- $\left.\left(\mathrm{NH}_{3}\right)(\mathrm{OH}) \mathrm{CO}(\mathrm{OXALATO})_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (II)
Ivan Bernal ${ }^{\text {b }}$; James Cetrulloa; Jozef Myrczek ${ }^{\text {ab }}$
${ }^{a}$ Chemistry Department, University of Houston, Houston, TX, U.S.A. ${ }^{\mathrm{b}}$ Technical University of Wroclaw, Wroclaw, Poland

To cite this Article Bernal, Ivan, Cetrullo, James and Myrczek, Jozef(1993) 'LIGAND DISPLACEMENT REACTIONS FROM THE COORDINATION SPHERE OF $\left[\mathrm{CIS}\right.$ - $\left.\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{NO}_{3}:$ THE CRYSTAL AND MOLECULAR STRUCTURES OF $\left[C I S-C O\left(\mathrm{NH}_{3}\right)(\mathrm{OH}) \mathrm{CL}\right] \mathrm{CL}$ (I) AND $\left[\mathrm{CO}^{3}\left(\mathrm{NH}_{3}^{2}\right)_{4}{ }_{4} \mathrm{OXA}^{3} \text { ALATO }\right]_{2}[$ TRANS-
$\left.\left(\mathrm{NH}_{3}\right)(\mathrm{OH}) \mathrm{CO}(\mathrm{OXALATO})_{2}\right] \cdot 4 \mathrm{H}_{2}^{3} \mathrm{O}(\mathrm{II})^{\prime}$, Journal of Coordination Chemistry, 30: 3, 367-378
To link to this Article: DOI: 10.1080/00958979308022770
URL: http://dx.doi.org/10.1080/00958979308022770

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
```


LIGAND DISPLACEMENT REACTIONS FROM THE COORDINATION SPHERE OF $\left[C I S-C O\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{NO}_{3}$: THE CRYSTAL AND MOLECULAR STRUCTURES OF $\left[C I S-\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{OH}) \mathrm{CL}\right] C L$ (I) AND $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{4}(\text { OXALATO })\right]_{2}[$ TRANS$\left(\mathrm{NH}_{3}\right)(\mathrm{OH}) \mathrm{CO}(O X A L A T O)_{2} \cdot \mathbf{4 H _ { 2 }} \mathbf{O}$ (II)

IVAN BERNAL*, JAMES CETRULLO ${ }^{\dagger}$ and JOZEF MYRCZEK ${ }^{\dagger \#}$
Chemistry Department, University of Houston, Houston, TX 77204-5641, U.S.A.

(Received September 21, 1992)

Abstract

Compound (I) crystallizes in the space group Pnma with cell constants $a=13.295(2), b=10.320(1)$, $c=6.732(1) ; V=923.63 \AA^{3}, d$ (calc; $\left.M=214.97, z=4\right)=1.546 \mathrm{gm} \mathrm{cm}^{-3}$. Data (2340 total reflections) were collected over the range $4^{\circ} \leq 2 \Theta \leq 70^{\circ}$ and corrected for absorption ($\mu=23.804 \mathrm{~cm}^{-1}$). The cation is a cis-chlorohydroxo species in which all the hydrogen atoms were accurately located and refined. Refinement of the heavy atoms with anisotropic thermal parameters and of the hydrogen atom positions ($B=4.0 \AA^{2}$, fixed) led to the final $R(F)$ and $R_{w}(F)$ factors of 0.033 and 0.039 , respectively.

Compound (II) crystallizes in the monoclinic space group $P 2_{1} / n$ with cell constants $a=11.429$ (2), $b=8.298(2), c=14.512(2) \AA, \beta=102.25^{\circ} ; V=1344.895 \AA^{3} ; d$ (meas., picnometer) $=1.845 \mathrm{gm} \mathrm{cm}^{-3}$, d (calc; $M=771.22, Z=2$) $=1.815 \mathrm{gm} \mathrm{cm}^{-3}$. A total of 3488 unique data were collected over the range $4^{\circ} \leq 2 \Theta \leq 60^{\circ}$, of which 1976 wee used in the final refinement cycle. The data were corrected for absorption ($\mu=19.111 \mathrm{~cm}^{-1}$). The anion of this compound lies on an inversion centre; therefore NH_{3} and the OH are disordered. All other hydrogen atoms present in the cation and anion, as well as of the waters of hydration, were located in the X-ray study. Refinement of the heavy atoms with anisotropic thermal parameters while adding the hydrogen atoms as fixed contributions ($B=4.0 \AA^{2}$) produced final values of the discrepancy indices of $R(F)=0.044$ and $R_{w}(F)=0.036$.

Both compounds were obtained during efforts to prepare single crystals of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\right.$ (oxalato)]Cl starting from $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)$, oxalic acid and NaCl , and their identification is of interest from the standpoint of ligand replacement reactions. The presence or absence of the trans effect was investigated and we conclude that this effect can be observed or masked depending on the nature of the charge-compensating ions present in the crystals.

KEYWORDS: Cobalt(III), amine, nitrite, oxalate, reactions, x-ray structure

[^0]
INTRODUCTION

As a part of our investigations into the crystallization behaviour of metal amine oxalates, we recently reported ${ }^{1}$ the crystal structures of the compounds $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\right.$ (oxalato) $] \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (a conglomerate) and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\right.$ (oxalato) $] \mathrm{I} \cdot \mathrm{H}_{2} \mathrm{O}$ (a racemate) and, thus, were interested in the structure of the chloride in order to determine its crystallization pathway. It has long been known that NO_{2} ligands can be displaced by carboxylic acids, such as oxalic acid. In fact, such a displacement of ligands was used in the past as an argument for assigning geometrical isomerism to certain species. For example, the displacement of NO_{2} ligands from Erdmann's salt, $\mathrm{K}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right]$, was used by Shibata ${ }^{2}$ in 1916 to determine whether the anions were cis or trans. The ensuing controversy this paper created is described in detail by Komiyama. ${ }^{3}$

Finally, we have prepared ${ }^{4} \mathrm{NH}_{4}$ [trans- $\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Co}\left(\mathrm{NO}_{2}\right)_{2}$ (oxalato)] by the ligand displacement method of Ito and Shibata ${ }^{5}$ and determined the structure of the anion in the form of the [trans-Co(en $\left.)_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]\left[\right.$ trans- $\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Co}\left(\mathrm{NO}_{2}\right)_{2}$ (oxalato)] and found that, indeed, the amino groups are trans to each other. What we found when we attempted to isolate the chloride, by first displacing a pair of NO_{2} groups from $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}$with oxalic acid/sodium oxalate, and adding an excess of NaCl to the resulting solution is discussed below.

EXPERIMENTAL

Syntheses

$\left[\right.$ cis- $\left.\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{NO}_{3}$ was prepared according to the procedure of Grubitsch. ${ }^{6}$ An equimolar amount of this compound and oxalic acid were dissolved, with stirring at $60^{\circ} \mathrm{C}$, in a minimum of water and a small excess of NaCl was added, as was done when preparing the iodide. ${ }^{1}$ The crystals obtained in this attempt were of [cis-Co($\left.\mathrm{NH}_{3}\right)_{4}$ (oxalato) NO_{3}; therefore, a large excess of NaCl was added to the same solution and pink crystals were isolated, and which turned out to be compound (I).

Compound (II) was obtained when a mol of both oxalic acid and sodium oxalate and excess NaCl were added, with stirring at $60^{\circ} \mathrm{C}$, to the solution of [cis$\left.\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{NO}_{3}$. This is probably not the only compound formed during this attempt to synthesize $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{ox})\right] \mathrm{Cl}$. Instead, we believe, the solution contained a mixture of compounds but the crystallization batch we used for our studies comprised largely (II) since density and elemental analysis agree with the crystallographic formulation and FABS data showed a peak of the correct mass for the ion triplet of (II).

Analyses

Elemental analyses were not carried out on (I) since we had only a very small number of crystals; however, its structure, including hydrogen atoms is so well defined that it constitutes an elemental analysis. FABS data on (II) obtained at the University of Houston shows a peak at 700 mass units, which corresponds to the monoprotonated ion triplet of composition $\left\{\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right]_{4}(\mathrm{ox})\right]_{2}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)(\mathrm{OH})(\mathrm{ox})_{2}\right] \mathrm{H}^{+}\right\}$, which can be
viewed as the FABS protonation of the OH of the bis-oxalato cobalt moiety. Details of FABS acquisition techniques can be found in ref. 7. Elemental analyses ${ }^{8}$ give reasonable agreement with the formula for (II). Theory for $\mathrm{Co}_{3} \mathrm{O}_{21} \mathrm{~N}_{9} \mathrm{C}_{8} \mathrm{H}_{36}$: C, 12.46; H , $4.71 ; \mathrm{N}, 16.35 ; \mathrm{O}, 43.57 \%$; found: $\mathrm{C}, 12.60 ; \mathrm{H}, 4.65 ; \mathrm{N}, 14.87 ; \mathrm{O}, 43.41 \%$. Note, in this context, that the measured density (average of two independent determinations) is a little higher than that calculated from the mass and unit cell volume of (II). This, together with the FABS result, indicate our compositional assignment is reasonable and consistent with the X-Ray results. Density measurements were carried out picnometrically, on (II), in duplicate. Average of two measurements is $1.845 \mathrm{gm} \mathrm{cm}^{-3}$.

X-Ray measurements

Data for both compounds were collected and processed in the same fashion. All data were collected with an Enraf-Nonius CAD-4 diffractometer operating with a Molecular Structure Corporation TEXRAY-230 modification ${ }^{9}$ of the SDP-Plus software package. ${ }^{10}$ The procedure used for crystal alignment, cell constant determination, space group determination, and data collection were uniform for both crystals. They were centred with data in the $18^{\circ} \leq 2 \Theta \leq 30^{\circ}$ range and examination of the cell constants, absences, and Niggli matrix ${ }^{1 t}$ clearly showed (I) to crystallize in a primitive, orthorhombic lattice whose systematic absences belong to those of the space group Pnma or $P n a 2_{1}$. The former was initially assumed and found to be correct from refinement and the distribution of intensities, which was centrosymmetric. Compound (II) crystallizes in the primitive, ${ }^{11}$ monoclinic space group $P 2_{1} / n$ since the systematic absences clearly show the presence of a two-fold screw axis and an n-glide.

The details of data collection and processing are summarized in Tables 1 and 2, respectively, for compounds (I) and (II). The intensity data sets were corrected for

Table 1 Summary of data collection and processing parameters for $\left[\right.$ cis $\left.-\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{OH}) \mathrm{Cl}\right] \mathrm{Cl}$ (I).

Space Group	Pnma
Cell Constants	$a=13.295(2)$
	$b=10.320(1)$
Cell Volume	$c=6.732(2) \AA$
Molecular Formula	$V=923.63 \AA^{3}$
Molecular Weight	$\mathrm{CoCl}_{2} \mathrm{ON}_{4} \mathrm{H}_{13}$
Density (calc; $Z=4 \mathrm{~mol} /$ cell $)$	214.97
Radiation Employed	$1.546 \mathrm{~g} \mathrm{~cm}{ }^{-3}$
Absorption Coefficient	$\mathrm{MoK}_{\sigma}(\lambda=0.71073 \AA)$
Relative Transmission Coefficients	$\mu=23.8 \mathrm{~cm}^{-1}$
Data Collection Range	0.7970 to 0.9997
Scan Width	$4^{\circ} \leq 2 \Theta \leq 70^{\circ}$
Total Data Collected	$\Delta \Theta=1.0+0.35 \mathrm{tan} \Theta$
Data Used in Refinement*	2340
$R=\Sigma\| \| F_{o}\left\|-\left\|F_{c}\right\|\right\| / \Sigma\left\|F_{o}\right\|$	1605
$R_{w}=\left[\Sigma w^{2}\left(\left\|F_{o}\right\|-\left\|F_{c}\right\|\right)^{2} / \Sigma\left\|F_{o}\right\|^{2}\right]^{1 / 2}$	0.033
Weights Used	0.039

[^1]Table 2 Summary of data collection and processing parameters for $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \text { (oxalato) }\right]_{2}[$ trans$\left.\left(\mathrm{NH}_{3}\right)(\mathrm{OH}) \mathrm{Co}(\text { oxalato })_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (II).

Space Group	$P Q_{1} / n$		
Cell Constants	$a=11.429(2)$		
	$b=8.298(2)$		
	$c=14.512(2) \AA$		
Cell Volume	$\beta=102.25(1)^{\circ}$		
Molecular Formula	$V=1344.895 \AA^{3}$		
Molecular Weight	$\mathrm{Co}_{3} \mathrm{O}_{21} \mathrm{~N}_{9} \mathrm{C}_{8} \mathrm{H}_{36}$		
Density, measured (picnometry)	$771.22 \mathrm{~m}^{\circ}$		
Density, (calc; $Z=2$ mol/cell)	$1.845 \mathrm{gm} \mathrm{cm}^{-3}$		
Radiation Employed	$1.815 \mathrm{~g} \mathrm{~cm}^{-3}$		
Absorption Coefficient	$\mathrm{MoK}_{\alpha}(\lambda=0.71073 \AA)$		
Relative Transmission Coefficients	$\mu=19.11 \mathrm{~cm}^{-1}$		
Data Collection Range	0.8736 to 0.9997		
Scan Width	$40 \leq 2 \Theta \leq 60^{\circ}$		
Total Data Collected	$\Delta \Theta=1.0+0.35 \tan \Theta$		
Data Used In Refinement*	3488		
$R=\Sigma\left\\|\| \| F_{o}\left\|-\left\|F_{c} \\| / \Sigma\right\| F_{o}\right\|\right.$	1976		
$R_{w}=\left[\Sigma w^{2}\left(\left\|F_{o}\right\|-\left\|F_{c}\right\|\right)^{2} / \Sigma\left\|F_{o}\right\|^{2}\right]^{1 / 2}$	0.044		
Weights Used	0.036		

* The difference between this number and the total is due to subtraction of 1512 data that were systematically absent reflections, redundant data collected to obtain reflections suitable for the absorption correction, symmetry related, standards or did not meet the criterion that $\mathrm{I} \geq 3 \sigma(\mathrm{I})$.
absorption using empirical curves derived from Psi scans ${ }^{9,10}$ of suitable reflections. The scattering curves were taken from Cromer and Waber's compilation. ${ }^{12}$

The structures were solved from the Patterson maps using Co as the heavy atom. For compound (I), the space group Pnma was assumed and found to be correct, since as expected from the cell contents, the Co has to be at a special position (in this case a mirror plane; see below). Eventual refinement results prove the choice of the space group to be justified.

There was no ambiguity about the space group of (II). After refinement of the scale factor and the positional parameters of the two Co atoms, a difference Fourier map produced many of the non-hydrogen atoms. The remaining atoms were found in subsequent difference maps. Heavy atoms were refined isotropically until convergence. Conversion of the heavy atoms to anisotropic motion in the case of (I) resulted in a good quality refinement, as shown by the R factors. For both compounds, we found enough sensibly positioned hydrogen atoms of the amines to be able to calculate the missing ones. As for the hydroxo ligand of (I), its hydrogen was found at an equally sensible position; thus, it added as fixed contributions ($B=4.00 \AA^{2}$) to the structure factors. In (II), however, the hydroxy ligand is disordered with its trans-axial amine; therefore, since two well placed hydrogens were found for the amine ($\mathrm{N}(1)$) the disorder problem was ignored. These procedures resulted in the successful refinement of the structures to final residual values of $R(F)=0.033$ and $R_{w}(F)=0.039$ for (I) and of $R(F)=0.044$ and of $R_{w}(F)=0.036$ for (II).

Figures 1 and 3 give labelled views of the molecules. Figures 2 and 4 depict the packing of the ions in their respective unit cells. Final positional and equivalent isotropic thermal parameters are given in Tables 3 and 4. Bond lengths and angles are listed in Tables 5 and 6.

Figure 1 The contents of the asymmetric unit present in compound (I). Note that all hydrogen atoms were found experimentally at the positions shown. The numbering system is described herein.

DISCUSSION

There is no crystallographic disorder or controversial issue regarding the solution and refinement of (I); moreover, judging by the fact that we experimentally found most of the hydrogens of the cation, and that sensible values are obtained for the distances and angles associated with their positions after being refined, the quality of the structural description of the cation present in (I) is more than adequate. For example, the three $\mathrm{Co}-\mathrm{N}$ distances are 1.954(1), 1.956(1) and 1.959(1) \AA. Figure 1 shows that N3 is the amine nitrogen trans to another amine (itself, since the mirror converts N3 into the fourth amine of the cation); as such, it should have the longest Co-N distance due to the trans effect, and we note that it does. N 2 is trans to the hydroxo ligand; therefore, it should have the intermediate value of the $\mathrm{Co}-\mathrm{N}$ bonds, and it does. Finally, the $\mathrm{Co}-\mathrm{Cl}$ distance is $2.272(1) \AA$, a result which compares well with the values of $2.270(2), 2.267(2), 2.264(1)$ and $2.266(1)(a v .=2.268(2) \AA)$ found ${ }^{13}$ in two different crystalline polymorphs of $\left[\right.$ cis- $\alpha-\mathrm{Co}($ trien $\left.) \mathrm{Cl}_{2}\right] \mathrm{Cl} \cdot \mathrm{nH}_{2} \mathrm{O}$

Figure 2 Packing of cations and anions in compound (I). This is a stereo pair.
($\mathrm{n}=2,3$). The $\mathrm{Co}-\mathrm{O}(\mathrm{H})$ distance is $1.971(1) \AA$, which is in range of values obtained by Solans, et al., ${ }^{14}$ who studied a series of Cr (III) amines containing hydroxide ligands.

The only additional comment we wish to make is that the presence of chlorine in the coordination sphere and as a charge compensating anion is not unexpected in view of the fact that excess NaCl was used. The presence of the hydroxide must

Figure 3 The contents of the asymmetric unit present in compound (II). Note that all hydrogen atoms, including those at the waters of crystallization, were found experimentally at the positions shown. The numbering system is described herein.

Figure 4 The packing mode of cations, anions and waters of crystallization in compound (II). This is a b axis projection. Beginning at $0,0,0$, note the alternation of anion-cation-anion-cation. . . along the a and c axes, as well as along $a=1 / 2$. The Co cations and anions are hydrogen bonded to one another in strings, which, in turn, are linked by waters of crystallization.

Table 3 Positional parameters and estimated Standard Deviations for I.

Atom	x / a	y / b	z / c	$B\left(\AA^{2}\right)$
Co	$0.10484(3)$	0.2500	$0.18041(7)$	$1.603(6)$
Cl1	$-0.02536(6)$	0.2500	$-0.0383(1)$	$2.71(2)$
C12	$0.14743(4)$	$0.50121(6)$	$-0.34052(9)$	$2.53(1)$
O1	$0.0108(2)$	0.2500	$0.4067(5)$	$3.74(6)$
N1	$0.2173(2)$	0.2500	$0.3672(5)$	$2.36(5)$
N2	$0.1999(2)$	0.2500	$-0.0414(5)$	$2.62(6)$
N3	$0.1025(2)$	$0.4398(2)$	$0.1771(3)$	$2.40(4)$
H1	0.2126	0.1748	0.4471	4.0^{*}
H2	0.2757	0.2500	0.2940	4.0^{*}
H4	0.2396	0.1748	-0.0329	4.0^{*}
H5	0.1620	0.2500	-0.1608	4.0^{*}
H7	0.1342	0.4745	0.0637	4.0^{*}
H8	0.1347	0.4694	0.2949	4.0^{*}
H9	0.0333	0.4662	0.1808	4.0^{*}
H10	0.0429	0.3183	0.3867	4.0^{*}

[^2]Table 4 Positional parameters and estimated standard deviations for II.

Atom	x / a	y / b	z / c	$B\left(\AA^{2}\right)$
Col	0.5000	0.5000	0.5000	1.83(2)
Co 2	0.02472(6)	0.2607(1)	$0.30555(5)$	$1.39(1)$
O1	0.5642(3)	$0.7237(4)$	0.4710 (2)	$1.97(8)$
O 2	$0.5489(3)$	0.5975 (5)	$0.6345(2)$	2.49(9)
O3	$0.6517(3)$	$0.9442(5)$	$0.5427(2)$	2.7 (1)
O4	$0.6312(3)$	0.8162(5)	$0.7114(2)$	$2.50(9)$
O5	$0.1461(3)$	$0.3527(4)$	0.4042(2)	1.72 (8)
O6	-0.0565(3)	0.2054(4)	0.4041 (2)	1.64(8)
O7	$0.1695(3)$	$0.4145(5)$	0.5559(2)	3.0(1)
O8	-0.0221(3)	$0.2115(5)$	$0.5618(2)$	3.1(1)
N1	$0.3332(4)$	$0.6097(5)$	$0.4828(3)$	$1.9(1)$
N2	$0.1045(4)$	0.0540(5)	$0.3228(3)$	$1.7(1)$
N3	-0.1093(4)	$0.1719(5)$	0.2149(3)	2.0(1)
N4	$0.1152(4)$	$0.3171(5)$	$0.2109(3)$	1.8(1)
N5	-0.0510(4)	$0.4728(6)$	0.2903(3)	2.0(1)
Cl	0.6046 (5)	$0.8113(6)$	$0.5415(3)$	1.6(1)
C 2	$0.5945(4)$	$0.7360(7)$	0.6388(3)	1.8(1)
C3	$0.1154(5)$	$0.3457(7)$	$0.4845(4)$	$1.8(1)$
C4	0.0042(5)	$0.2463(7)$	$0.4863(3)$	$1.9(1)$
Owl	$0.6606(3)$	$0.3372(5)$	0.2358(2)	2.8(1)
Ow2	0.6954(3)	0.1199 (5)	0.3981(3)	3.4(1)
Hwl	0.6250	0.3046	0.1835	4*
Hw2	0.6464	0.2773	0.3007	4*
Hw3	0.6875	0.0546	0.4335	4*
Hw4	0.7929	0.1386	0.4003	4*
H 1	0.2814	0.5578	0.4283	4*
H2	0.3409	0.7185	0.4680	4*
H3	0.2810	0.6103	0.5280	4*
H4	0.0705	-0.0120	0.3627	4*
H5	0.1886	0.0712	0.3524	4*
H6	0.1035	0.0000	0.2656	4*
H7	-0.1806	0.2152	0.2268	4*
H8	-0.1035	0.1933	0.1503	4*
H9	-0.1090	0.0571	0.2241	4*
H10	0.0727	0.2718	0.1531	4*
H11	0.1250	0.4453	0.1992	4*
H12	0.1906	0.2710	0.2293	4*
H13	0.0000	0.5566	0.3007	4*
H14	-0.1035	0.4775	0.3325	4*
H15	-0.0959	0.4780	0.2270	4*

* Hydrogen atoms were found experimentally and assigned fixed thermal parameters of $4.0 \AA^{2}$. Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as: $(4 / 3)^{*}\left[a^{2 *} \beta_{11}+b^{2 *} \beta_{22}+c^{2 *} \beta_{33}+a b(\cos \gamma)^{*} \beta_{12}+a c(\cos \beta)^{*} \beta_{13}+b c(\cos \alpha)^{*} \beta_{23}\right]$.
be due to the fact that the oxalate anion reacts with the water medium to form protonated oxalato species $\left(\mathrm{C}_{2} \mathrm{O}_{4} \mathrm{H}^{-}\right)$and OH^{-}anions which enter the coordination sphere. Thus, this reaction merits mechanistic and kinetic observation. The fact that the two NO_{2} ligands can be displaced by oxalic acid is obvious from the composition of (II), which was obtained by the addition of excess oxalate and a smaller amount of NaCl . Moreover, in the $\mathrm{Cr}(\mathrm{III})$ series, compounds have been isolated ${ }^{15}$ from mixtures of $\left[\mathrm{Cr}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$cations and oxalate, and which have been formulated as containing en, oxalato and OH ligands in the $\mathrm{Cr}(\mathrm{III})$ coordination

Table 5 Bond distances and angles for \mathbf{I}.

A) Bond Distances in Angstroms							
Atom 1	Atom 2		Distance			Atom 2	Distance
Co	Cli		2.272(1)	Co		O1	$1.971(1)$
Co	N1		1.954(1)	Co		N2	$1.956(1)$
Co	N3		$1.959(1)$	N		H1	0.946 (1)
N1	H2		0.920 (1)	N		H4	0.940 (1)
N2	H5		0.948(1)	N		H7	0.943(1)
N3	H8		0.952(1)	N		H9	0.959(1)
O1	H10		$1.013(1)$				
B) Bond Angles in Degrees							
Atom I	Atom 2	Atom 3	Angle	Atom 1	Atom 2	Atom 3	Angle
ClI	Co	O1	91.00 (4)	Cl	Co	N1	179.68(4)
Cl1	Co	N2	89.85(4)	Cl 1	Co	N3	88.89(3)
OI	Co	N1	89.33(6)	O1	Co	N2	179.16(6)
O1	Co	N3	89.93(3)	N1	Co	N2	89.83(6)
N1	Co	N3	$91.11(3)$	N2	Co	N3	90.09(3)
Co	O1	H10	110.18 (9)	Co	N1	H1	108.45(8)
Co	N1	H2	107.6(1)	Co	N2	H4	108.46(8)
Co	N2	H5	107.8(1)	Co	N3	H7	112.48(7)
Co	N3	H8	107.75(6)	Co	N3	H9	107.43 (7)
H1	N1	H2	$111.05(9)$	H4	N2	H5	$110.45(9)$
H7	N3	H8	110.54(9)	H7	N3	H9	109.95(8)
H8	N3	H9	108.55(9)				

Table 6 Bond distances and angles for II.

A) Bond Distances in Angstroms					
Atom 1	Atom 2	Distance	Atom 1	Atom 2	Distance
Col	O1	2.072(2)	O4	C2	1.242(3)
Col	O2	2.077(2)	O5	C3	$1.286(3)$
Col	N1	2.079(2)	06	C4	$1.291(3)$
Co 2	O5	1.927(2)	07	C3	1.229 (3)
Co 2	06	$1.919(2)$	O8	C4	1.231(3)
Co 2	N2	1.934(2)	Cl	C2	$1.571(3)$
Co 2	N3	$1.941(2)$	C3	C4	1.521(4)
Co2	N4	$1.943(2)$	Ow1	Hwl	0.826 (2)
Co 2	N5	$1.953(2)$	Ow2	Hw4	$1.120(2)$
Ol	Cl	$1.260(3)$	Ow2	Hw3	0.766 (2)
O2	C2	$1.258(3)$	Ow1	Hw2	1.107(2)
O3	Cl	1.225(3)			

B) Selected Hydrogen Bonds up to $2.1 \AA$ (distances in \AA, angles in degrees)

Intramolecular*

Table 6 Continued.

C) Bond Angles in Degrees							
Atom 1	Atom 2	Atom 3	Angle	Atom 1	Atom 2	Atom 3	Angle
O5	Co 2	N4	91.30(8)	H8	N3	H9	108.5(2)
O5	Co 2	N5	87.66(9)	Co 2	N4	H10	106.2(2)
O6	Co 2	N2	88.92(8)	Co 2	N4	H11	115.7(2)
06	Co 2	N3	88.70 (8)	Co 2	N4	H12	107.4(2)
06	Co 2	N4	176.85(9)	H10	N4	H11	107.4(2)
O6	Co 2	N5	91.53 (8)	H10	N4	H12	111.1(2)
N2	Co 2	N3	$91.91(9)$	H11	N4	H12	109.1(2)
N2	Co 2	N4	89.88(9)	Co 2	N5	H13	$115.0(2)$
N2	Co 2	N5	178.1(1)	Co 2	N5	H14	107.0(2)
N3	Co 2	N4	94.25(9)	Co 2	N5	H15	106.6(2)
N3	Co 2	N5	89.91 (9)	H13	N5	H14	109.6 (2)
N4	Co 2	N5	89.58(9)	H13	N5	H15	108.9(2)
Col	O1	C1	115.9(2)	H14	N5	H15	109.6(2)
Col	O 2	C2	115.3(2)	O1	C 1	O3	128.0(3)
Co 2	O5	C3	111.3(2)	O1	Cl	C2	114.6 (2)
Co 2	O6	C4	112.1(2)	O3	C1	C2	$117.5(3)$
Col	N1	HI	106.6(2)	O 2	C2	O4	126.4(3)
Col	N1	H2	108.7(2)	O2	C2	C1	115.4(2)
Col	N1	H3	126.7(2)	O4	C2	C1	118.3(3)
H1	N1	H2	108.0(2)	O5	C3	O7	123.9 (3)
H1	N1	H3	101.2(2)	O5	C3	C4	115.4(2)
H2	N1	H3	104.4(2)	O7	C3	C4	120.6(3)
Co 2	N2	H4	110.6(2)	O6	C4	O8	125.2(3)
Co 2	N2	H5	108.6(2)	O6	C4	C3	114.4(2)
Co 2	N2	H6	113.1(2)	O8	C4	C3	120.4(3)
H4	N2	H5	108.1(2)	Hw1	Owl	Hw2	120.2(2)
				Hw3	Ow2	Hw4	109.7(2)
D) Torsion Angles in Degrees							
Atom 1		Atom 2	Atom 3		Atom 4		Angle
O 2		Col	O1		C1		2.0
N1		Col	O1		C1		92.6
Ol		Col	O 2		C 2		- 1.4
N1		Col	O 2		C2		- 87.8
O6		Co 2	O5		C3		-4.3
N2		Co 2	O5		C3		-93.2
N3		Co 2	O5		C3		20.9
N4		Co 2	O5		C3		176.9
N5		Co 2	05		C3		87.4
O5		Co 2	06		C4		- 2.2
N2		Co 2	06		C4		88.4
N3		Co 2	06		C4		- 179.6
N4		Co 2	06		C4		20.8
N5		Co 2	06		C4		- 89.8
Co 1		O1	C 1		O3		176.6
Col		O1	C 1		C2		-2.1
Col		O 2	C2		O 4		- 179.2
Col		O 2	C 2		Cl		0.8
Co 2		O5	C3		07		- 170.1
Co2		O5	C3		C4		9.2
Co 2		06	C4		O8		- 172.9
C 2		06	C4		C3		7.4
Ol		C1	C2		O 2		0.8
Ol		Cl	C 2		O 4		- 179.1
O3		C1	C2		O2		- 178.0
O3		C1	C2		O4		2.1
O5		C3	C4		O6		- 11.5
O5		C3	C4		O8		168.8
07		C3	C4		06		167.8
07		C3	C4		O8		- 11.9

sphere. Thus ligand displacement followed by anation seems to be common, and readily observed, in the chemistry of both Cr (III) and Co (III) amines. These comments apply equally well to the isolation and formulation of (II), below.

Compound (II) contains the cation we were searching for; however, the excess of oxalate results in displacement of three ammonias as well as the two nitro ligands to form the charge compensating anions found herein. This species is historically interesting in that, in 1922, Riesenfeld and Klemm ${ }^{16}$ reported isolating K[trans$\left.\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{ox})_{2}\right]$ by the reaction of oxalate anions with Erdmann's salt, $\mathrm{K}[$ trans$\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Co}\left(\mathrm{NO}_{2}\right)_{4}$], and claimed the product contained two NH_{3} ligands trans to each other; however, at that time it was impossible to prove such a claim unambiguously. In view of our results with (II), we feel that, indeed this species was probably formed in the system described by them; moreover, it was probably not the only species present in their reaction medium - merely the most insoluble one, given the conditions they used. Such accidental isolation of mixed cation-anion pairs, both containing a common metal, has been noted before in the $\mathrm{Cr}(\mathrm{III})$ system ${ }^{15}$ mentioned above, where $\left[\mathrm{Cr}(\mathrm{en})_{2} \mathrm{ox}\right]\left[\mathrm{Cr}(\mathrm{en})(\mathrm{ox})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ crystals were isolated and their crystal structure determined. These authors remarked, that in their system, other products probably existed and that the ones they isolated were merely those which exceeded the solubility limit of certain potential combinations of cation-anion or were neutral species, such as $\left[\mathrm{Cr}(\mathrm{en})(\mathrm{ox})\left(\mu_{2}-\mathrm{OH}\right)_{2} \mathrm{Cr}(\mathrm{en})(\mathrm{ox})\right] .{ }^{15}$

Finally, let us compare stereochemical data for the cation of (II) with compounds $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Ox}\right] \mathrm{I} \cdot \mathrm{H}_{2} \mathrm{O}$ (III) and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Ox}\right] \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (IV). ${ }^{17}$ Despite the identical nature of the cations in (II), (III) and (IV), there is a distinct irregularity in the relationship between the axial (amines trans to one another) and basal plane Co-N distances (amines trans to oxalate oxygens). In (II) and (IV) the average value of the axial $\mathrm{Co}-\mathrm{N}$ distances are a little longer than the basal ones, while in (III) the reverse is true. At the moment we are attributing this difference to the influence that the charge compensating anions have on the amine nitrogens of the cations. In (II) and (IV) the anions are powerful hydrogen bonding species which seem able to selectively weaken the Co-N bonds. This is not possible in the case of (III) since, by comparison with oxalate and nitrate, iodide is a very poor hydrogen bonding species. Thus, the nature of the counteranion seems to influence the inner sphere ($\mathrm{Co}-\mathrm{N}$) bonds in a way that it can counteract the traditional trans effect between the ligands in the coordination sphere. If this observation is indeed general, trans effects should best be measurable in compounds in which hydrogen bonding effects are reduced to a minimum.

Compound	Co-N(basal)	Co-N(axial)	Co-O(ox)*
(II) Cation	$1.941(2)$	$1.934(2)$	$1.919(2)$
(III)	$1.943(2)$	$1.953(2)$	$1.927(2)$
	$1.989(4)$	$1.961(4)$	$1.889(3)$
(IV)	$1.967(4)$	$1.968(3)$	$1.907(3)$
	$1.952(2)$	$1.960(2)$	$1.899(1) \AA$

[^3]The oxalato C-C distances for the cation and anion of (II) are, respectively, $1.521(4)$ and $1.571(3) \AA$. The bonded-oxygen C-O distances are: cation, 1.286 (3) and $1.291(3) \AA$; anion, $1.260(3)$ and $1.258(3) \AA$. Finally, the C-O distances of the
non-ligating oxygens are: cation, $1.229(3)$ and $1.231(3) \AA$; anion, $1.225(3)$ and $1.242(3) \AA$.

In conclusion, we feel that our accidental discovery of three new [Co(III)amines] species in solutions containing oxalate makes the relevant cobalt chemistry similar with that observed earlier ${ }^{15}$ for $\mathrm{Cr}(\mathrm{III})$ and that, in both cases, the identification of these compounds may help chemists working on the equilibria, mechanisms and kinetics of anation reactions in sorting out the details of these systems. It should be clear that $\operatorname{Co}(\mathrm{III})$ and $\mathrm{Cr}(\mathrm{III})$ share similar chemistry and ligand displacement reactions, which are independent of metal and of the nature of the amine; e.g., monodentate $-\mathrm{NH}_{3}$ or bidentate en. Finally, if its established later that our observations on the influence of the counteranion on the trans effect in solids is general, this study was well worth the effort for that observation alone.

Supplementary material

Anisotropic thermal parameters for (I) and (II) (2 pages), structure factor tables (I) and (II) $(17+11$ pages) are available from the authors upon request.

Acknowledgements

We thank the Robert A. Welch Foundation for support of this investigation through Grant E-594 and for Fellowships for J. Cetrullo and J. Myrczek. We also thank the US National Science Foundation for the funds used to purchase the diffractometer.

References

1. I. Bernal and J. Cetrullo, Struct. Chem., 1, 235 (1990).
2. Y. Shibata and T.J. Maruki, Chem. Soc. Japan, 37, 1142 (1916).
3. Y. Komiyama, Bull. Chem. Soc. Japan, 30, 13 (1957).
4. I. Bernal and J. Cetrullo, J. Coord. Chem., 20, 247 (1989).
5. M. Ito, and M. Shibata, Chem. Lett., 4, 375 (1975).
6. H. Grubitsch, "Anorganisch-präparative Chemie", (Springer-Verlag, Vienna, 1950), p. 447.
7. X. Liang, S. Suwanrumpha and R.B. Freas, Inorg. Chem., 30, 652 (1991).
8. Galbraith Laboratories, Inc., 2323 Sycamore Dr., Knoxville, Tenn., 37921.
9. TEXRAY- 230 is a modification of the SDP-Plus ${ }^{10}$ set of X-ray crystallographic programs distributed by Molecular Structure Corporation, 3200 Research Forest Dr., The Woodlands, TX 77386, U.S.A., for use with their automation of the CAD-4 diffractometer.
10. SDP-Plus is the Enraf-Nonius Corporation X-ray diffraction data processing programs distributed by B.A. Frenz and Associates, 1140 East Harvey Road, College Station, TX 77840, U.S.A.
11. R.B. Roof, "A Theoretical Extension of the Reduced Cell Concept in Crystallography", Report LA-4038, Los Alamos Scientific Laboratory (1969).
12. D.T. Cromer and J.T. Waber "International Tables for X-Ray Crystallography", (Kynoch Press, Birmingham, England, 1975) Vol. IV, Tables 2.2 .8 and 2.3 .1 (respectively, for the scattering factor curves and the anomalous dispersion values).
13. I. Bernal, J. Coord. Chem., 15, 337 (1987).
14. X. Solans, M. Font-Altaba, J.L. Brianso, A. Solans, J. Casabo and J. Ribas, Struct. Commun., 11, 1199 (1982).
15. J.W. Lethbridge, L.S. Dent Glasser, and H.F.W. Taylor, J. Chem. Soc., (A)., 1862 (1970).
16. F.H. Riesenfeld and R. Klemm, Z. anorg. Chem., 124, 1 (1922).
17. I. Bernal and J. Cetrullo, Struct. Chem., 1, 227 (1990).

[^0]: * Author for correspondence.
 ${ }^{+}$Fellows of the Robert A. Welch Foundation.
 * On leave from the Technical University of Wroclaw, I-5, Wroclaw, Poland.

[^1]: * The difference between this number and the total is due to subtraction of 735 data that were systematically absent reflections, redundant data collected to obtain reflections suitable for theabsorption correction, symmetry related, standards or did not meet the criterion that $I \geqslant 3 \sigma(I)$.

[^2]: * Hydrogen atoms were found experimentally and assigned fixed thermal parameters of $4.0 \AA^{2}$. Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameterdefined as: $(4 / 3) *\left[a^{2 *} \beta_{11}+b^{2 *} \beta_{22}+c^{2 *} \beta_{33}+a b(\cos \gamma)^{*} \beta_{12}+a c(\cos \beta)^{*} \beta_{13}+b c(\cos \alpha)^{*} \beta_{23}\right]$.

[^3]: * Each Co-O distance in a given line is trans to the Co-N distance in the same line of the first column.

